

Network Simulation Using

Omnet++

Ver. 0.1

2014-2016, Siamak Sarmady.

• Please inform mistakes and missing information to (siamak.sarmady – at – gmail.com)

A S I M P L E E T H E R N E T N E T W O R K

2

Table of Contents

A S I M P L E E T H E R N E T N E T W O R K

3

Simulating a Simple Ethernet Network

Create a new omnet project by using File → New → Omnet++ Project. Enter a project name and click on

next.

Figure 1-1: Creating a new Omnet++ project

Pressing the next button will bring you to a page in which you can select what kind of project you are

planning to create.

Chapter

2

A S I M P L E E T H E R N E T N E T W O R K

4

Select the "Empty project with src and simulation folders". This option is same as empty project but will

allow you to keep your project files in a more orderly fashion.

A S I M P L E E T H E R N E T N E T W O R K

5

Pressing the next will bring you to the simulation tool chain selection window (compilers and simulation

tools). Just accept the defaults and press next.

A S I M P L E E T H E R N E T N E T W O R K

6

In the final window, you are given an option to select configurations of your project. By choosing

"Advanced Settings" you can change the detailed settings of the project. These settings can be modified

later. So just select finish button and Omnet++ will create the project.

If you expand the progect folder in the left hand side "Project explorer" panel, you will see what files have

been created for the project.

A S I M P L E E T H E R N E T N E T W O R K

7

We intend to use the inet library in our simulation projects. As such we assume you have already installed

and built "inet" library.

In order to use components from "inet" library, we need to enable it in our project. Right click on the

project and select the "Settings…". Click on the "project references" and from the list of projects, put a

tick mark on the inet project (which contains the library code).

Adding the reference will cause the components to appear in the components palette (in NED design

section of Omnetpp). Notice that if you do not perform this step the inet library components will not be

available to you in this project.

A S I M P L E E T H E R N E T N E T W O R K

8

From the "Project Explorer" panel, open the simulations folder (under the project folder) and double click

on the "package.ned" file. This is where we are going to design the architecture of our simple network.

A S I M P L E E T H E R N E T N E T W O R K

9

In the center of the IDE the network design area will appear. In the right hand side a palette of components

(mostly from inet library) will appear. You can view the network design area either in graphical form or

the source code of it. For the time being let's keep the graphical or design view.

Now drag a network component and drop it into the design area. The network component is a container

in which we will add the components of our network.

Note: the inet project should be open simultaneously with the project you have created, otherwise the

components of inet will not appear in your palette.

A S I M P L E E T H E R N E T N E T W O R K

10

Now from the list of components, search for StandardHost. Searching is done using the search bar above

the list of components.

Drag two of the StandardHost components to the design area. One of them will be called StandardHost

while the other will be called StandardHost1. While you can rename these components by right clicking

on them and selecting properties, let's keep the default names for the time being.

A S I M P L E E T H E R N E T N E T W O R K

11

 Now use the "Connection" tool in the palette to build a connection between the two Standard hosts.

When connecting the two, select the ethg interfaces of the two hosts (and not the ppp). Ethg is an

Ethernet interface while ppp is used to model a point to point connection.

Now also add an IPv4NetworkConfigurator and rename it from its properties (right click on the

component) to "configurator".

Now view the source of the NED file (i.e. the network design) and add the "Ethernet100" channel type.

Finally use the channel type for the connection between the two hosts (last line of the network

definitions).

A S I M P L E E T H E R N E T N E T W O R K

12

package proj_1.simulations;

import inet.networklayer.autorouting.ipv4.IPv4NetworkConfigurator;

import inet.nodes.inet.StandardHost;

channel Ethernet100 extends ned.DatarateChannel

{

 datarate = 100Mbps;

 delay = 100us;

 ber = 1e-10;

}

network Network

{

 @display("bgb=467,264");

 submodules:

 standardHost: StandardHost {

 @display("p=110,75");

 }

 standardHost1: StandardHost {

 @display("p=321,75");

 }

 configurator: IPv4NetworkConfigurator {

 @display("p=412,15");

 }

 connections:

 standardHost.ethg++ <--> Ethernet100 <--> standardHost1.ethg++;

}

Note: Check your ned file to make sure the source code looks like the above code before proceeding to

the next step.

Now, in order to run the simulation we need to add a configuration. Double click on the "omnetpp.ini"

file inside the simulations folder. Add the following contents to the file. These settings are the main part

of the simulation configuration. They specify the specifications of each node including the configurations

of each layer (physical, network, transport and application).

[General]

network = Network

*.configurator.netmask = "255.255.0.0"

*.configurator.networkAddress = "10.10.0.0"

*.standardHost.numPingApps = 1

*.standardHost.pingApp[0].destAddr = "standardHost1"

A S I M P L E E T H E R N E T N E T W O R K

13

*.standardHost.pingApp[0].startTime = uniform(1s,5s)

*.standardHost.pingApp[0].printPing = true

In above configuration, we have changed the default mask and the network address of the configurator

to "255.255.0.0" and "10.10.0.0" respectively. The component will assign an IP address and mask to each

of the nodes.

We then configure the ping-app which is already included in the StandardHost component. We configure

the ping application on the first host and set the destination of the ping as the second host. We use the

name of the second host for the destination address (so the ARP protocol inside the Standardhost will

need to find the corresponding IP address).

Now right click on the project and select build. The build might take a few minutes.

You can check whether the build process (creating the simulation executable file) has been successful or

not. In case your build has finished without any error, you may proceed to run the simulation.

A S I M P L E E T H E R N E T N E T W O R K

14

After the build is complete, right click on the project folder again, select the project, then select the run.

From the sub menu select the "Omnet++ Simulation".

You will then need to select the initialization file of the project. Select the "omnetpp.ini" file of the project

we created (i.e. proj-1).

A run configuration will be created and the executable simulation file which was created in build step will

be launched. The launch process might take anything above between a few seconds and a minute. From

the simulation window press the Start button and the simulation will start.

A S I M P L E E T H E R N E T N E T W O R K

15

The event section shows the simulation information:

#10 3.195254009217 standardHost --> standardHost1 arpREQ ARP req: 10.0.0.2=? (s=10.0.0.1(0A-AA-

00-00-00-01)) ETH: 0A-AA-00-00-00-01 > FF-FF-FF-FF-FF-FF (72 bytes)

#19 3.195359769216 standardHost1 --> standardHost arpREPLY ARP reply: 10.0.0.2=0A-AA-00-

00-00-02 (d=10.0.0.1(0A-AA-00-00-00-01)) ETH: 0A-AA-00-00-00-02 > 0A-AA-00-00-00-01 (72 bytes)

#27 3.195465529215 standardHost --> standardHost1 ping0 PING req 10.0.0.1 to 10.0.0.2 (56 bytes)

id=53 seq=0 ICMP echo request 10.0.0.1 to 10.0.0.2 IPv4: 10.0.0.1 > 10.0.0.2 ETH: 0A-AA-00-00-00-01

> 0A-AA-00-00-00-02 (102 bytes)

#36 3.195573689214 standardHost1 --> standardHost ping0-reply PING reply 10.0.0.2 to 10.0.0.1

(56 bytes) id=68 seq=0 ICMP echo reply 10.0.0.2 to 10.0.0.1 IPv4: 10.0.0.2 > 10.0.0.1 ETH: 0A-AA-00-

00-00-02 > 0A-AA-00-00-00-01 (102 bytes)

Apparently in the beginning an ARP request and reply have been used to find the IP address of the

destination. After that the ping requests and replies have followed.

A S I M P L E E T H E R N E T N E T W O R K

16

Using an Ethernet Switch

Inet library provides a component to simulate an Ethernet switch. You may use EtherSwitch for this

purpose.

The following ned file shows how the above network has been configured.

package proj_1.simulations;

import inet.networklayer.configurator.ipv4.IPv4NetworkConfigurator;

import inet.node.ethernet.EtherHost;

import inet.node.ethernet.EtherSwitch;

import inet.node.inet.StandardHost;

network Network

{

 @display("bgb=526,391");

 submodules:

 configurator: IPv4NetworkConfigurator {

 @display("p=473,20");

 }

 etherSwitch: EtherSwitch {

 @display("p=227,196");

 }

 standardHost3: StandardHost {

A S I M P L E E T H E R N E T N E T W O R K

17

 @display("p=96,284");

 }

 standardHost4: StandardHost {

 @display("p=388,293");

 }

 connections:

 standardHost3.ethg++ <--> Ethernet100 <--> etherSwitch.ethg++;

 etherSwitch.ethg++ <--> Ethernet100 <--> standardHost4.ethg++;

}

channel Ethernet100 extends ned.DatarateChannel

{

 datarate = 100Mbps;

 delay = 1us;

 ber = 1e-10;

}

Adding a TCP application

In previous section we created traffic using Ping application and ICMP packets. Now let's use he network

we created with TCP traffic.

As we stated before, the main part of the simulation is the initialization configuration file or "omnetpp.ini".

We build the simulation configuration in this file.

Comment out the ping application configurations and add the following configurations instead.

[General]

network = Network

*.configurator.netmask = "255.255.0.0"

*.configurator.networkAddress = "10.10.0.0"

ICMP application

#*.standardHost.numPingApps = 1

#*.standardHost.pingApp[0].destAddr = "standardHost1"

#*.standardHost.pingApp[0].startTime = uniform(1s,5s)

#*.standardHost.pingApp[0].printPing = true

TCP application

*.standardHost.numTcpApps = 1

*.standardHost.tcpApp[0].typename = "TCPSessionApp"

*.standardHost.tcpApp[0].connectAddress = "standardHost1"

*.standardHost.tcpApp[0].connectPort = 10021

*.standardHost.tcpApp[0].tOpen = 0s

*.standardHost.tcpApp[0].tSend = 0s

*.standardHost.tcpApp[0].tClose = 0s

A S I M P L E E T H E R N E T N E T W O R K

18

*.standardHost1.numTcpApps = 1

*.standardHost1.tcpApp[0].typename = "TCPSinkApp"

*.standardHost1.tcpApp[0].localAddress = "standardHost1"

*.standardHost1.tcpApp[0].localPort = 10021

In the above configuration we have two series of settings. One set will configure the host which plays the

role of TCP client (Standardhost) and the other configures the server node (StandardHost1). For the server

we just configure one application which will be a simple TCP application called TCPSessionApp. The

application will connect to host named "standardhost1" and the destination port number will be 10021.

These are the addresses of the TCP server we are trying to connect. The next 3 parameters are set at zero

which is enough for this experiment.

For the server we use TCPSinkApp. You could also use the TCPEchoApp but that will send back the exact

information it receives for the response. We need to specify the port number on which the server will

provide its service and the local network address it will bind to.

After updating the configurations, you can run the simulation again and this time you will see the TCP

traffic is being simulated on the network link.

Using UDP applications

In this section we use a UDP application for the experiments. We comment out both the ping and TCP

applications in our initialization configuration file and add the new applications for the UDP client and

server applications.

[General]

network = Network

*.configurator.netmask = "255.255.0.0"

*.configurator.networkAddress = "10.10.0.0"

#icmp application

#*.standardHost.numPingApps = 1

#*.standardHost.pingApp[0].destAddr = "standardHost1"

#*.standardHost.pingApp[0].startTime = uniform(1s,5s)

#*.standardHost.pingApp[0].printPing = true

#TCP application

#*.standardHost.numTcpApps = 1

#*.standardHost.tcpApp[0].typename = "TCPSessionApp"

#*.standardHost.tcpApp[0].active = true

#*.standardHost.tcpApp[0].connectAddress = "standardHost1"

#*.standardHost.tcpApp[0].connectPort = 10021

#*.standardHost.tcpApp[0].tOpen = 0s

A S I M P L E E T H E R N E T N E T W O R K

19

#*.standardHost.tcpApp[0].tSend = 0s

#*.standardHost.tcpApp[0].tClose = 0s

#*.standardHost1.numTcpApps = 1

#*.standardHost1.tcpApp[0].typename = "TCPSinkApp"

#*.standardHost1.tcpApp[0].localAddress = "standardHost1"

#*.standardHost1.tcpApp[0].localPort = 10021

#UDP application

*.standardHost.numUdpApps = 1

*.standardHost.udpApp[0].typename = "UDPVideoStreamCli"

*.standardHost.udpApp[0].serverAddress = "standardHost1"

*.standardHost.udpApp[0].serverPort = 10025

*.standardHost.udpApp[0].startTime = 0s

*.standardHost1.numUdpApps = 1

*.standardHost1.udpApp[0].typename = "UDPVideoStreamSvr"

*.standardHost1.udpApp[0].localAddress = "standardHost1"

*.standardHost1.udpApp[0].localPort = 10025

*.standardHost1.udpApp[0].sendInterval = 0.1s

*.standardHost1.udpApp[0].packetLen = normal(1000B, 500B)

*.standardHost1.udpApp[0].videoSize = normal(100000B, 10000B)

As you see we have used a component called UDPVideoStreamCli for the client side and in the server side

a UDPVideoStreamSvr component has been used. In the first set of settings we have again determined

the server address and port number. In the server application settings we have again set the port address

and the IP address the server will bind to. We have then determined the specifications of the video traffic

the server will produce. For each of these parameters you may use different statistical distributions, plain

values or

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

20

802.15.4 Network using InetManet Library

Creating 802.15.4 networks has not been possible with "Inet" library until version 2.5. However in version

3.0 the physical layer of Mixim library will be integrated into "Inet" library and the inet library will get

802.15.4 support. Mixim library itself is no more maintained. Until then it is possible to use the InetManet

library for the purpose.

Installing InetManet

In order to install the InetManet library (version 2.2) follow these steps:

- Download the archive file from git repository of the InetManet project

(https://github.com/inetmanet/inetmanet). From the branch selection combo box select

"InetManet 2.2" and then click on the "Download Zip" button at the right hand side of the page.

- Now import the zip file into Omnet++ using File → Import → General → "Existing Project into

Workspace".

Chapter

4

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

21

- Click next and use the "Select Archive File" option to import the archive file you just downloaded.

- Now right click on the InetManet project and click on "Build" to build the project.

- After the project is built successfully, it will be available for use in your projects.

Creating the Project

Create a new project with the name "wsn-1". Again select the options to create separate directories for

source (src directory) and simulations. You will then need to add a reference to the InetManet library for

the project. You can either add the reference while creating the project or after that. If you have already

created the project you can right click on the project and select properties. You should then add a

reference in "Project References" section.

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

22

Network Design and Settings

We start by creating the network design. You may either use the components palette or just enter the

source code of the network.

Assuming that the project name is "wsn1" the source code will look like the following:

package wsn_1.simulations;

import inet.examples.wpan.csma802154.nodecsma802154;

import inet.networklayer.autorouting.ipv4.IPv4NetworkConfigurator;

import inet.world.radio.ChannelControl;

network Network

{

 parameters:

 @display("bgb=536,253");

 submodules:

 host0: nodecsma802154 {

 @display("p=69,185");

 }

 host1: nodecsma802154 {

 parameters:

 @display("r=,,#707070;p=439,185");

 }

 channelControl: ChannelControl {

 parameters:

 @display("p=199,22");

 }

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

23

 configurator: IPv4NetworkConfigurator {

 parameters:

 @display("p=317,22");

 }

}

The above code will result into a network design which is visualized as the following figure in the NED

designer.

Now that the network design is in place, we need to add the required settings for the simulation

(omnetpp.ini). The following settings are typical settings required for the project. The settings use DSRUU

for the routing of the network. Since we have only two nodes the routing protocol does not matter that

much. In the next example we will have more than two nodes and more settings will be provided for the

routing protocol.

[General]

network = Network

sim-time-limit = 1000s

output-scalar-file-append = true

num-rngs = 2

cmdenv-express-mode = true

tkenv-plugin-path = ../../../Etc/plugins

**.vector-recording = false

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

24

**.constraintAreaMinX = 0m

**.constraintAreaMinY = 0m

**.constraintAreaMinZ = 0m

**.constraintAreaMaxX = 600m

**.constraintAreaMaxY = 250m

**.constraintAreaMaxZ = 0m

**.debug = true

**.coreDebug = false

**.channelNumber = 0

*.host0.x = 50m

*.host0.y = 50m

*.host0.numUdpApps = 1

*.host0.udpAppType = "UDPVideoStreamCli"

*.host0.udpApp[0].serverAddress = "host1"

*.host0.udpApp[0].serverPort = 10025

*.host0.udpApp[0].startTime = 0s

*.host1.x = 150m

*.host1.y = 50m

*.host1.numUdpApps = 1

*.host1.udpAppType = "UDPVideoStreamSvr"

*.host1.udpApp[0].localPort = 10025

*.host1.udpApp[0].sendInterval = 0.1s

*.host1.udpApp[0].packetLen = normal(1000B, 500B)

*.host1.udpApp[0].videoSize = normal(100000B, 10000B)

ip settings

**.ip.procDelay = 10us

ARP configuration

**.arp.cacheTimeout = 100s

Parameters for the network interface and IFqueue #

**.wlan.ifqType = "DropTailQueue"

**.ifq.frameCapacity = 50

**.macAckWaitDuration = 0.001s

Parameters for MAC layer #

Parameters for PHY layer #

**.phy.transmitterPower = 0.5mW #[mW]

**.phy.sensitivity = -85dBm #[dBm]

**.phy.thermalNoise = -110dBm #[dBm]

**.phy.pathLossAlpha = 2

**.phy.snirThreshold = 4dB

Parameters for the channel control #

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

25

channel physical parameters

*.channelControl.carrierFrequency = 2.4GHz

*.channelControl.pMax = 2.0mW

*.channelControl.sat = -85dBm

*.channelControl.alpha = 2

*.channelControl.numChannels = 27

Parameters for the display module in the hosts #

display parameters (same as channelControl parameters and mac parameters)

**.disp.carrierFrequency = 2.4GHz

**.disp.sat = -85dBm #[dBm]

**.disp.alpha = 2

**.disp.transmitterPower = 1.0mW #[mW]

**.disp.sensitivity = -85dBm #[dBm]

Parameters for the Energy Model (units: mAh and mA) #

**.phy.usage_radio_idle = 1.38mA #[mA]

**.phy.usage_radio_recv = 9.6mA #[mA]

**.phy.usage_radio_sleep = 0.06mA #[mA]

**.battery.nominal = 25

**.battery.capacity = 25

**.battery.voltage = 10

**.battery.publishDelta = 0.5

**.battery.publishTime = 20s

**.rxSetupTime = 0.00108s

Output vectors #

**.End-to-end delay.vector-recording = true

**.Mean end-to-end delay.vector-recording = true

Simulation runs #

manet routing

**.routingProtocol="DSRUU"

#**.use-default=yes

proccesing delay in the routing protocol, avoid syncronization

**.broadcastDelay=uniform(0s,0.01s) # 10 mseconds

**.unicastDelay=uniform(0s,0.005s)

// parameters: DSRUU;

**.PrintDebug = true

**.FlushLinkCache = true

**.PromiscOperation = false

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

26

**.UseNetworkLayerAck = false

**.RouteCacheTimeout = 300 #300 seconds

**.SendBufferTimeout = 300# //30 s

**.SendBufferSize = -1

**.RequestTableSize = -1

**.RequestTableIds = -1

**.MaxRequestRexmt = -1 #// 16,

**.MaxRequestPeriod = 10 #//10 SECONDS

**.RequestPeriod = 500 #//500 MILLISECONDS

**.NonpropRequestTimeout = 30# //30 MILLISECONDS

**.RexmtBufferSize = -1 #//MAINT_BUF_MAX_LEN

**.MaintHoldoffTime = 250# //250 MILLISECONDS

**.MaxMaintRexmt = 2 # //2

**.TryPassiveAcks = true #//1

**.PassiveAckTimeout = 100# //100 MILLISECONDS

**.GratReplyHoldOff = 1 #, //1 SECONDS

**.MAX_SALVAGE_COUNT = 15 # //15

**.LifoSize = 20

**.PathCache = true

**.ETX_Active=false

**.ETXHelloInterval = 1 #, // Second

**.ETXWindowNumHello = 10

**.ETXRetryBeforeFail=-1

**.RREPDestinationOnly = false

**.RREQMaxVisit =5 # // Max Number that a RREQ can be processes by a node

Now that the network design and the simulation settings are done, we are ready to run the simulation.

Right click on the project and build it. Then right click again and select "Run As -> Omnet++ Simulation".

The actual location of the hosts has been defined in the settings file. The hosts are not moving in this

example.

A streaming video application (over UDP) has been used over the network. You may again change the

settings and statistical parameters of the video stream. Since the application UDP packets are much bigger

than the small MTU of the 802.15.4 network, the packets will be fragmented. The results of the simulation

show this fact.

8 0 2 . 1 5 . 4 N E T W O R K U S I N G I N E T M A N E T L I B R A R Y

27

