
An Investigation on Genetic Algorithm Parameters 

 

Abstract – Genetic algorithms provide a simple and almost generic method to solve complex optimization 

problems. Despite simplicity of it, genetic algorithm needs careful selection of settings like parent selection 

methods, mutation methods, population size ... to be able to find good solutions. Choosing unsuitable 

parameters and methods might result into longer program runs or even bad optimization results. In this 

report we use genetic algorithm in a sample “Bin Packing” problem. We implement and run the algorithm 

using different configurations and compare results. We then identify the best configuration among the tested 

parameters. 
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1 Introduction 

Choosing parameters and methods in genetic algorithm might result into very different results. A good 

configuration might cause the algorithm to converge to best results in a short time while a worse setting 

might cause the algorithm to run for a long time before finding a good solution or even it might never be 

able to find a good solution. In this report we implement GA with different parent selection, mutation, 

recombination methods and also different population sizes. We will then try to identify which settings will 

work better in this problem’s case. 

 

Bin packing problem is about separating bottles of different colors into separate boxes. We have chosen 10 

colors and 10 boxes for this purpose. Initially bottles with different colors are inside each box. We will 

separate bottles into boxes in a way that each box contains only one color. Box have unlimited capacity and 

our purpose is to minimize the moves between boxes. 

 

To be able to test the software we choose an initial data set (random number of bottles from different colors 

in each box). We use a fixed set of input data to be able to compare performance of different methods in 

finding the best solution. We will investigate different settings to see how fast they can reach or find a best 

solution.  

 

1.1 Representation  

 As we described earlier, movement of bottles between boxes will cause boxes to contain only a single color 

at the end of the movements. If we have 10 colors and 10 boxes then we might have “10!” different possible 

variations of solutions (in which every box contains a single color).  

 
10 options 9 options 8 options 7 options 6 options 5 options 4 options 3 options 2 options 1 options 

 

We can represent solutions with a character string of the length 10. We can then represent each color with 

one of the alphabets “a to j”. Because box colors are not repetitive, this is called a permutation 

representation. 

Siamak Sarmady 
School of Computer Sciences, 

Universiti Sains Malaysia, 

11800 Penang, Malaysia 

[P-COM0005/07(R) , P-COM0088/07] 
{sarmady@cs.usm.my, shaher5481561@yahoo.com} 



1.2 Fitness function 

Our target in this problem is to minimize number of movements between boxes. Perhaps the best fitness 

function can be based on the number of necessary movements to achieve each solution. Calculation of the 

number of moves (in any selected solution) could be easily achieved. We present a sample calculation 

below. 

 

Initial Colors in boxes: (number of bottles with colors a,b,c,d,e,f,g,h,i,j respectively) 
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Solution to be evaluated:  ibgcaedjhf 

 
i b g c a e d j h f 

 

We just sum up the number of colors which do not match each box’s color. This gives us the number of 

bottles which should move out from a specific box. Now if we calculate the sum of move outs from all the 

boxes we will have the total necessary movements. For example for above solution the Fitness (or actually 

unfitness) function can be calculated as below. 
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54 133 126 84 84 88 64 61 73 59 

 

Sum = 826 (Unfitness).  

 

In our genetic algorithm we will try to minimize this unfitness function. (Above sample is one of the best 

results our software has been able to find with that specific input set) 

 

2 Experimenting with simulation parameters and methods 

Because of the stochastic nature of the results we have developed the software in a way that each set of 

parameters has been run for 50 times to reach a reliable conclusion. For example to conclude about the 

“average fitness, maximum fitness, minimum fitness and diversity” of the population in Swap mutation 

method in 10 generations, we run the algorithm 50 times (every time with the same 10 generations) and 

calculate parameters by taking averages of them in those 50 runs. Next time we increase the generation 

number and repeat the 50 times to calculate parameters for that new generation level. This method has 

enabled us to run the algorithm more than 10,000 times with different settings to extract results for this 

report.  

 

2.1 Population size  

To be able to compare effect of changing the initial size of the population on genetic algorithm efficiency 

and results we needed to fix all the parameters except the population. The fixed configuration used for this 



section is being described here. In this section, all of the individuals become parents and the product of 

recombination will double the size of the population. We then preserve the best half of the resulting 

population and put away the reaming. In this way size of the population will remain unchanged. Mutation is 

done by swapping two gene values. Recombination happen according “order 1” method which is one of the 

methods being used for permutation type of representations. Generation numbers are chosen from 0 (initial 

generated data without running the algorithm) to 1000 generations with the step size of 50 generations.   

We have tested populations of 20,100 and 200. The algorithm has been run 50 times for each population 

size and each generation value. We have summarized the results in Graph 1. The graph only compares 

average of best found solutions (in population). Detailed Results are coming in Appendix A1 to A4. 

 

Graph 1: Comparison of the effect of population size 

 

Results show that higher population size provides a high diversity and therefore contains more sample 

solutions. As a result converging to better solutions happens sooner than smaller population sizes. Bigger 

population needs more time for the algorithm to run specially the time taken for sorting and evaluating the 

fitness of individuals is very CPU intensive. Smaller size of population looses the diversity very soon, before 

even finding a good solution. In our test the population size of 20 lost diversity (reached diversity of 1 

individual type) before reaching an acceptable solution. 

A population size of 200 does not provide much benefit over the population size of 100 with the 

consideration that the population size of 200 needs at least 2-4 times more CPU time. We therefore will use 

a population size of 100 in most of our experiments (when we need to fix population size and change and 

compare other parameters) 

 



2.2 Mutation Method  

We compare mutation effect on converging to best answer again by fixing all other parameters except the 

mutation type. For this part again, all the individuals become parents and the product of recombination will 

double the size of the population. We then preserve the best half of the resulting population and put away the 

reaming. In this way size of the population will remain unchanged. “Order 1” method of recombination has 

been used in all of the tests in this section. Generation numbers are chosen from 0 (initial generated data) to 

1000 generations with step size of 50. We have implemented and compare 3 types of mutations: 

 

• Swap: In this method only 2 genes are being swapped in individuals and mutation is applied to 100% 

of the Children after recombination.  

• Swap2: In this method 2 random genes are swapped with two other genes. Again 100% of the 

children are being mutated after recombination. 

• Decreasing Swap: This is similar to Swap method with the difference that the mutation rate 

decreases as we go through the generations. The probability of applying mutation to children is 

determined by the formula: P= 1- 0.9 * (t/T) 

 

In above formula “T” is the total generations and “t” is the current generation number. As a result 

we will have less mutation in higher generations. 

 

We run the algorithm 50 times for each setting the same as before. We have summarized the results in 

Graph 2. Detailed Results are coming in Appendix B1 to B4. 

 

Graph 2 shows that Swap2 method has the least efficiency. This is perhaps because this method distorts 

the chromosomes more than needed. Normal swap and “decreasing swap” show very near results. We 

therefore use normal swap method in other parts of the report and change other parameters to investigate 

their effects. 

 

 

Graph 2: Comparison of Mutation Methods on Converging to Best Answers (Min. Unfitness) 



2.3 Recombination Method  

We compare recombination effect on converging to best answer by fixing all other parameters except the 

crossover method. For this part again, all the individuals become parents and the product of recombination 

will double the size of the population. We then preserve the best half of the resulting population and put 

away the reaming. In this way size of the population will remain unchanged. Generation numbers are chosen 

from 0 (initial generated data) to 1000 generations with the step size of 50 generations. We have 

implemented and compared 2 types of crossover methods namely Oredr1 and PMX. We run the algorithm 

50 times for each setting the same as before. The results are summarized in Graph 2. Detailed Results are 

coming in Appendix C1 to C3. 

 
 

 
 

Graph 3: Comparison of Recombination Methods on Converging to Best Answers 

 

 

 

Graph 3 shows that PMX converges to good solutions much faster than “order 1” method. Actually using 

PMX method yield to best possible result (i.e. the one with the fitness of 826) in just 50 generations while 

the “order 1” method needs around 1000 generations to reach comparable results. This shows that the 

mutation and crossover methods can have very important effects on converging to good solutions and it 

worth to try other methods to see the effect. 
 

 



2.4 Parent Selection Method  

We compare parent selection method’s effect on converging to best answer again by fixing all other 

parameters and methods except the parent selection.  Population size is 100 individuals in this section, 

mutation type is normal swap and recombination is of the type “order 1”. 

 

•  “AllParent-BestHalf”: In this method which has been used in all other parts of this report, all the 

individuals become parents and produce the same amount of children as themselves. We then sort 

the new population (which its size has been doubled now) and put away the worst half and 

preserve the best half.  

•  “2BestParents-2WorseAway”: In this method only 2 best individuals are chosen as the parents and 

produce 2 other individuals. We then sort the population (which now has 2 more individuals) and 

put away 2 worst individuals. 

•  “2RandomParents-2WorseAway”: In this method only 2 random individuals are chosen as the 

parents and produce 2 other individuals. We then sort the population (which now has 2 more 

individuals) and put away 2 worst individuals. 

  

We run the algorithm 50 times for each setting the same as before. We have summarized the results in 

Graph 4. Detailed Results are coming in Appendix D1 to D4. 

 

 

 
 

Graph 4: Comparison of Parent Selection Methods on Converging to Best Answers 
 

 



 

Graph 4 shows that “AllParent-bestHalf” method has been able to reach better solutions in considerably 

lower generations. This was predictable because larger number of individuals are being crossed over and 

mutated in this method and we are searching more areas of the solution space in each generation. Two other 

methods in comparison act only on 2 individuals each time and therefore chances of change and finding 

better results are very lower and in each generation because we only search 2 more spots in the solution 

space in every generation.  

Between “2RandomParents-2WorseAway” and “2BestParents-2WorseAway” methods the first one is 

more convenient. This is because the method which acts on best 2 parents corrupts our best parents most of 

the time and therefore the evolution cannot take place very good. The other “2RandomParents-

2WorseAway” method reaches better performance because it preserves best results and acts on 2 randomly 

chosen individuals and sometimes is able to add better parents to the population without distorting our best 

parents.  
 

3 Software Implementation 

We are using Sun JavaSE version 1.5 or higher to implement the software. Testing the software will need an 

installation of Java run time engine (JRE) and the “bin” directory of the JRE should be on PATH. Running 

the software is easily done by running the “run.bat” batch file. The entire software has been developed by us 

without using codes from internet. 
 

3.1 Configuration file 

The settings file of the software has a very flexible and easy format. Acceptable options and descriptions are 

provided in comments inside the configuration file. The configuration file should be inside the software 

directory under the name “settings.txt”. 
 
#################################################################################### 

# Run Modes:   

#       SingleRun, Runs only a single time and gives detailed results 

#       StatisticalRun, runs several times and gives statisrical results 

#################################################################################### 

RunMode=StatisticalRun 

 

#################################################################################### 

# Global Settings, Applies to all run modes and settings: 

#       Population, number of individuals in population 

#################################################################################### 

Population=100 

 

#################################################################################### 

# SingleRun Mode Settings: 

#       Generations, number of generations 

#################################################################################### 

Generations=1000 

 

#################################################################################### 

# StatisticalRun Mode Settings: 

#       NumRuns, run each exact setting how many times to extract avg of results 

#       GenerationsStart, Start statistical run with how many generations 

#       GenerationsIncrease, Increase number of generations with which step size 

#       GenerationsEnd, End the statistical run in how many generations 

#################################################################################### 

NumRuns=50 

GenerationsStart=0 

GenerationsIncrease=50 

GenerationsEnd=1000 

 

#################################################################################### 

# ParentSelection and Survival Method: 

# AllParent-BestHalf ,All Individuals Parent - Best Half of the Population 

# 2BestParents-2WorseAway , 2 best indivs become parent, two worst go away 

# 2RandomParents-2WorseAway , 2 Random become parent, two worst go away 

#################################################################################### 



ParentSelectionMethod=AllParent-BestHalf 

 

#################################################################################### 

# MutuationMethod: 

# Swap , Swap 2 genes 

# DecreasingSwap , Swap genes with decreasing rate as generations increase 

# Swap2 , swap 2 times meaning 4 genes will be swaped 

#################################################################################### 

MutuationMethod=Swap 

 

#################################################################################### 

# RecombineMethod: 

# order1, order1 crossover method 

# pmx, pmx crossover method 

#################################################################################### 

RecombineMethod=pmx 

 

Code 1: Software Configuration File 

 

3.2 Input and Output files format 

To be able to change input data and also to make import of the output data into other software easy, we are 

using the “csv” delimited text format for both input and output files. Input file is always needed for the 

operation of the software while the output file is only created in “StatisticalRun” mode. 

Each line of input file resembles initial bottles (of different colors) in each of 10 boxes. We have currently 

used a fixed data set for our entire tests but it is very easy to change the data. 

As mentioned earlier, output file format is also in ”csv” delimited text format. Columns of data are 

“Average of fitness of individuals in the population during test runs”, “Average of minimum fitness during 

the test runs”, “Average of maximum fitness during test runs” and “Diversity of population during test runs”. 

 

3.3 Sample results of “SingleRun” mode 

A sample of the detailed results provided by the software is presented here. Understanding these results 

should be easy for anyone who knows about genetic algorithm and the problem we were trying to solve. 

 

 
Parent Selection Method : AllParent-BestHalf 

Crossover Method : pmx 

Mutation Method : Swap 

Population : 100 

Generations : 1000 

 

Listing All 100 members 

 

1)Ind(92605): ibgdceajhf   UnFitness: 826 

2)Ind(93722): ibgdceajhf   UnFitness: 826 

3)Ind(95527): ibgdceajhf   UnFitness: 826 

4)Ind(92348): ibgdceajhf   UnFitness: 826 

... (removed from report to save space)... 

64)Ind(94839): ibgdecajhf   UnFitness: 830 

65)Ind(94093): ibgdcehjaf   UnFitness: 830 

... (removed from report to save space)... 

99)Ind(95362): ibgdcjaehf   UnFitness: 832 

100)Ind(95362): ibgdcjaehf   UnFitness: 832 

 

Average UnFitness = 828  Min UnFitness = 826  Max UnFitness = 832 Diverse types 

are 23 

 

Listings Diverse Types: 

ibgdceajhf(826) 

ibgcaedjhf(826) 

hbgdceajif(827) 



hbgcaedjif(827) 

ebgicdajhf(828) 

ibgdaecjhf(828) 

ebgcadhjif(828) 

ibgcedajhf(829) 

hbgdaecjif(829) 

ebgdachjif(829) 

ibgcadejhf(830) 

ibgjaedchf(830) 

ihgcaedjbf(830) 

ibgdecajhf(830) 

ibgdcehjaf(830) 

ebgdafhjic(830) 

ihgdceajbf(830) 

ebgiadcjhf(830) 

ebgiafdjhc(830) 

hbgcedajif(830) 

ebgchdajif(830) 

ibgdaejchf(831) 

ibgdcjaehf(832) 

 

Code 2: Output Sample in “SingleRun” mode 

 

3.4 Sample results of “StatisticalRun” mode 

In this section we bring a sample output of the program in “StatisticalRun” mode on console. Summerization 

of these details is saved in an “output.txt” file inside the software directory after each “StatisticalRun”. 

 
Parent Selection Method : AllParent-BestHalf 

Crossover Method : pmx 

Mutation Method : Swap 

Population : 100 

Generations : 0 

 

Run# 1 : Average UnFitness = 894  Min UnFitness = 863  Max UnFitness = 930 Diverse types are 100 

... (removed from report to save space)... 

Run# 50 : Average UnFitness = 895  Min UnFitness = 854  Max UnFitness = 932 Diverse types are 100 

 

Parent Selection Method : AllParent-BestHalf 

Crossover Method : pmx 

Mutation Method : Swap 

Population : 100 

Generations : 50 

 

Run# 1 : Average UnFitness = 830  Min UnFitness = 826  Max UnFitness = 833 Diverse types are 39 

Run# 2 : Average UnFitness = 829  Min UnFitness = 826  Max UnFitness = 832 Diverse types are 36 

... (removed from report to save space)... 

Run# 50 : Average UnFitness = 830  Min UnFitness = 826  Max UnFitness = 833 Diverse types are 44 

 

 

 

... (removed from report to save space)... 

 

 

 

 

Parent Selection Method : AllParent-BestHalf 

Crossover Method : pmx 

Mutation Method : Swap 

Population : 100 

Generations : 1000 

 

Run# 1 : Average UnFitness = 829  Min UnFitness = 826  Max UnFitness = 833 Diverse types are 34 

Run# 2 : Average UnFitness = 829  Min UnFitness = 826  Max UnFitness = 832 Diverse types are 30 

... (removed from report to save space)... 

Run# 50 : Average UnFitness = 828  Min UnFitness = 826  Max UnFitness = 830 Diverse types are 22 

 

 

Generations = 0 , Average Results (50 runs): Avg UnFitness = 894.16  Min UnFitness = 854.86  Max 

UnFitness = 930.34  Avg Diversity = 100.0 



Generations = 50 , Average Results (50 runs): Avg UnFitness = 829.7  Min UnFitness = 826.0  Max 

UnFitness = 832.68  Avg Diversity = 41.8 

Generations = 100 , Average Results (50 runs): Avg UnFitness = 828.34  Min UnFitness = 826.0  Max 

UnFitness = 831.5  Avg Diversity = 26.78 

Generations = 150 , Average Results (50 runs): Avg UnFitness = 828.2  Min UnFitness = 826.0  Max 

UnFitness = 831.42  Avg Diversity = 25.74 

Generations = 200 , Average Results (50 runs): Avg UnFitness = 828.36  Min UnFitness = 826.0  Max 

UnFitness = 831.6  Avg Diversity = 26.58 

Generations = 250 , Average Results (50 runs): Avg UnFitness = 828.32  Min UnFitness = 826.0  Max 

UnFitness = 831.38  Avg Diversity = 25.88 

Generations = 300 , Average Results (50 runs): Avg UnFitness = 828.28  Min UnFitness = 826.0  Max 

UnFitness = 831.54  Avg Diversity = 26.56 

Generations = 350 , Average Results (50 runs): Avg UnFitness = 828.2  Min UnFitness = 826.0  Max 

UnFitness = 831.2  Avg Diversity = 25.34 

Generations = 400 , Average Results (50 runs): Avg UnFitness = 828.18  Min UnFitness = 826.0  Max 

UnFitness = 831.48  Avg Diversity = 25.56 

Generations = 450 , Average Results (50 runs): Avg UnFitness = 828.3  Min UnFitness = 826.0  Max 

UnFitness = 831.84  Avg Diversity = 27.22 

 

... (removed from report to save space)... 

 

Generations = 900 , Average Results (50 runs): Avg UnFitness = 828.32  Min UnFitness = 826.0  Max 

UnFitness = 831.54  Avg Diversity = 26.26 

Generations = 950 , Average Results (50 runs): Avg UnFitness = 828.18  Min UnFitness = 826.0  Max 

UnFitness = 831.58  Avg Diversity = 26.68 

Generations = 1000 , Average Results (50 runs): Avg UnFitness = 828.3  Min UnFitness = 826.0  Max 

UnFitness = 831.32  Avg Diversity = 25.92 

 

Code 3: Output Sample in “StatisticalRun” mode 

 

4 Conclusion and Future Work 

In this report we experienced different parameter types and methods on a single problem and we were able 

to see the effects of changes.  We want to mention that though we have tried to extract more reliable results 

by running each configuration for 50 times and then calculating the averages, these results are only valid for 

this specific problem and the specific chromosome representation we have chosen. 

Even with this problem, effects of the changes are only valid if done with exact order we did. For example 

we have only tested different mutation and crossover methods on a population with a size of 100 individuals. 

Results might be different with other population sizes. Also effects of changing multiple parameters and 

methods are not predictable because parameters are not completely independent from each other and might 

have effects on others. 
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